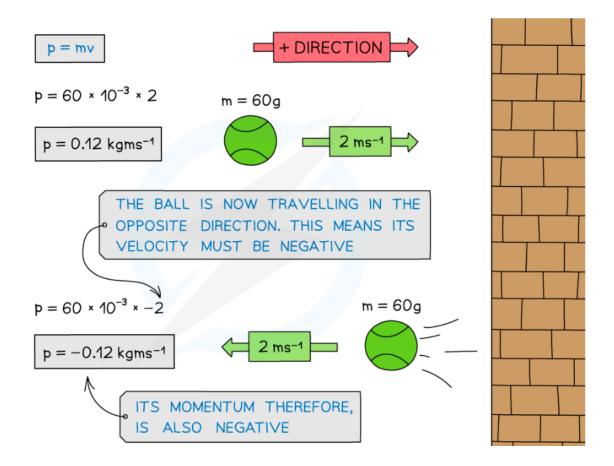
Momentum

An object with mass that is in motion has momentum


The momentum equation

Momentum is defined by the equation:

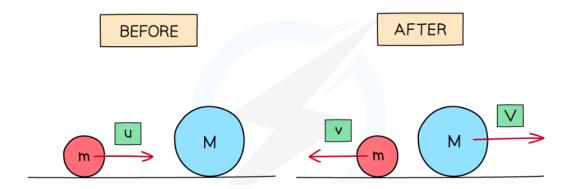
$$momentum = mass \times velocity$$

$$p = mv$$

- Where:
 - p= momentum, measured in kilogram metres per second (kg m/s)
 - o m = mass in kilograms (kg)
 - v = velocity in metres per second (m/s)
- This means that an object at rest (i.e. v = 0) has no momentum
- Momentum keeps an object moving in the same direction
 - It is difficult to change the direction of an object that has a large momentum
- Velocity is a vector with both magnitude and direction
 - This means that the momentum of an object also depends on its direction of travel
 - o Therefore, momentum can be either positive or negative
- If an object has positive momentum, then an object travelling in the opposite direction will have negative momentum

Conservation of momentum

• The principle of conservation of momentum states that:


In a closed system, the total momentum before an event is equal to the total momentum after the event

- A system, in physics, is an object or group of objects
- A closed system means that no energy is transferred into or out of the system and there are no external forces acting
- The principle of conservation of momentum can also be written as:

The total momentum before a collision = The total momentum after a collision

- Since momentum is a vector quantity, a system of objects moving in opposite directions (e.g. towards each other) at the same speed will have an overall momentum of 0 since they will cancel out
 - Momentum is always conserved over time
- The diagram below shows two masses *m* with velocity *u* and *M* at rest (ie. zero velocity)

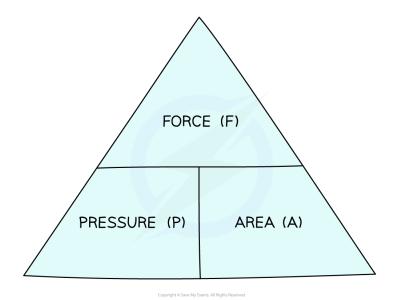
Principle of conservation of momentum for a collision

- Before the collision:
 - The momentum is only of mass *m* which is moving
 - o If the right is taken as the positive direction, the total momentum of the system is $m \times u$
- After the collision:
 - Mass M also now has momentum
 - The velocity of m is now -v (since it is now travelling to the left) and the velocity of M is V
 - The total momentum is now the momentum of M + momentum of m

Pressure

What is pressure?

Pressure is defined as

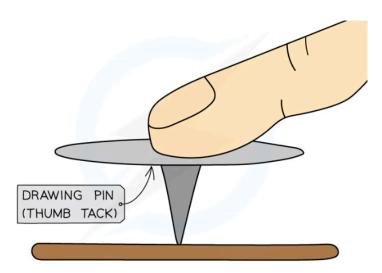

The force per unit area

- Pressure is measured in pascals (Pa)
 - o 1 pascal is equivalent to 1 newton per metre squared
 - 1 Pa = 1 N/m2
- It can be calculated using the following pressure equation:

$$pressure = \frac{force}{area}$$

$$p = \frac{F}{A}$$

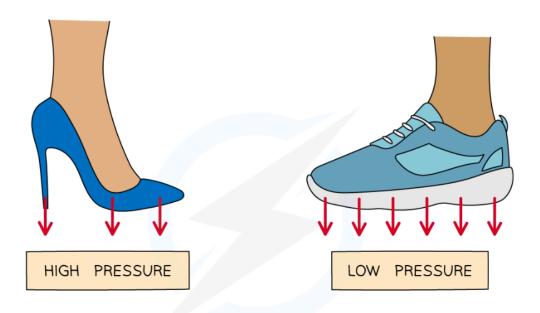
- Where:
 - \circ p = pressure measured in pascals (Pa) or newtons per metre (N/m₂)
 - *F* = force measured in newtons (N)
 - A = area measured in metres squared (m₂)
- This equation can be rearranged with the help of a formula triangle:


A formula triangle can help rearrange the pressure equation

- For more information on how to use a formula triangle refer to the revision note on speed & velocity
- This equation tells us that:
 - If a force is spread over a large area it will result in a small pressure
 - o If it is spread over a small area it will result in a large pressure

Examples of applications of pressure

- Example 1: Tractors
 - Tractors have large tyres
 - This spreads the weight (force) of the tractor over a large area
 - This reduces the pressure which prevents the heavy tractor from sinking into the mud
- Example 2: Drawing pins
- Drawing pins have sharp pointed ends with a very small area
- This concentrates the force, creating a large pressure over a small area
- This allows the drawing pin to be pushed into a wall


Applying a force to a drawing pin

- Example 3: High heels
 - High heels have small, sharp points with a small area
 - This concentrates the weight (force), creating a large pressure over a small area
 - Flat shoes have a larger area which the weight (force) is spread over resulting in a lower pressure

 This explains why high heels sink into soft surfaces more easily than flat shoes

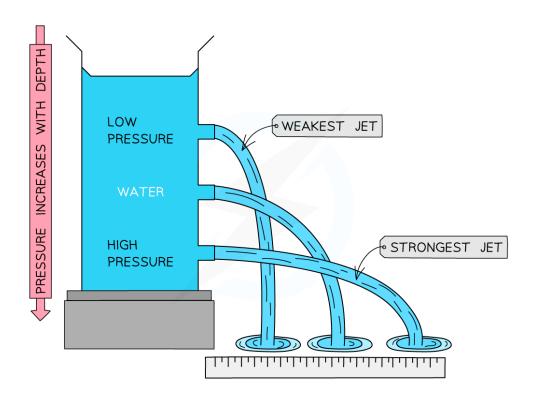
The effect of surface area on pressure

WEIGHT FROM HEELED SHOES IS SPREAD OVER A **SMALLER** AREA

THIS EXERTS A **HIGHER** PRESSURE ON THE GROUND

WEIGHT FROM FLAT SHOES IS SPREAD OVER A LARGER AREA

THIS EXERTS A LOWER PRESSURE ON THE GROUND

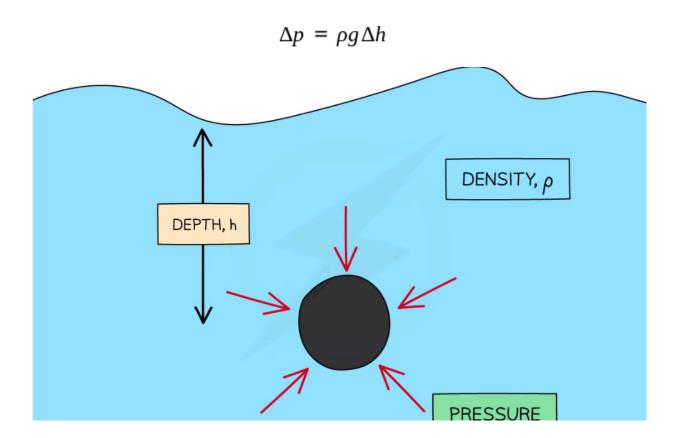

Liquid pressure

Factors affecting pressure in a liquid

- The pressure beneath the surface of a liquid will increase with the depth of the liquid
 - This is because the pressure in a liquid is caused by the force of the weight of the liquid above it
 - As the depth increases, there is increasingly more liquid above which causes the pressure to increase
- Pressure in a liquid also depends on the density of the liquid
 - The more dense the liquid, the greater the pressure it exerts

Pressure in a column of water

- In a column of water, the highest pressure would be at the bottom
 - If a hole is made at the bottom of the column, the water will pour out with a large force
 - If a hole was made at the top of the column, the water will pour out with a small force
 - This is because of the difference in pressure in the column caused by the weight of the water



Pressure in a column of water increases with depth, shown by the strong and weak jet of water

- If several holes were made at the same height, the water would spurt out the same distance from each hole
 - This is because pressure at the same depth acts equally in all directions

Calculating liquid pressure

- The pressure acting on an object in a liquid changes with depth
 - The deeper the object, the higher the pressure exerted upon it and vice versa
- The equation for the pressure difference at different depths in a liquid is given by the equation:

<u>Videos</u>

https://www.youtube.com/watch?v=TpHv-sGE_Dk

https://www.youtube.com/watch?v=NzKAJWTmlwg

https://www.youtube.com/watch?v=DxKelGugDa8